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This paper deals with the effects of magnetic field on heat transfer in a pulsatile flow. A mathematical 
model is developed to investigate the impact of magnetic field on the velocity and the temperature 
distributions between two concentric ducts. Finite differences method is used in order to solve the 
dimensionless governing equations, and implicit schemes for velocity and temperature are obtained. 
The effects of magnetic field on the velocity are represented by the Hartmann number. It is found that 
the increase of magnetic field leads to eliminate the annular effect of the pulsatile flow. It is also found 
that the velocity can be controlled by the external magnetic field which leads to affect the temperature 
profiles and so the heat transfer that could be improved or reduced by mastering the magnetic field.      
 
Key words: Pulsatile flow, magnetohydrodynamics (MHD), concentric ducts, finite differences, blood flow.  

 
 
INTRODUCTION 
 
The study of pulsatile flow has been the subject of 
numerous investigations. The first work dates back to 
1929 when Richardson and Tyler revealed by 
experimental measurements the existence of one of the 
main features of the oscillating flow which is called the 
annular effect. This effect is characterised by the 
presence of velocity maximums near the wall of the pipe. 
Later analyses of Womorsley (1955) and Uchida (1956) 
confirmed this result by analysing the sinusoidal motion 
of an incompressible fluid oscillating in a horizontal pipe. 
Atabek and Chang (1961) studied the unsteady flow in 
cylindrical pipe; they have developed an analytical 
solution for the velocity profile by assuming that  the  flow  

is established with far inputs. 
Yakhot and Grinberg (2003) investigated the influence 

of the pressure gradient frequency on the velocity 
amplitude and the phase difference between the pressure 
gradient and the axial velocity. This phase difference 
varies from 0° for the slow frequencies to 90° for the high 
frequencies. Kakac and Yenner (1973) obtained an exact 
solution in the case of a forced flow between two parallel 
plates. Suces (1981) numerically investigated the 
response functions of the wall temperature and the 
average temperature between a laminar fluid flow and a 
flat plate by using a finite difference method. Zhao (1995) 
performed  numerical  and  experimental   studies   on   a
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laminar air flow oscillating in a cylindrical pipe, heated by 
a uniform heat flux. From temperatures measured on 
several positions and at the inner wall of the heater, they 
obtained a correlation of average Nusselt number. 
Majdalani (2002) determined the exact solution of the 
Navier-Stokes equations governing the pulsatile flow in a 
cylindrical pipe where the pressure gradient was replaced 
by a sum of pulses expressed in terms of Fourier 
coefficients. 

The application of magnetic field to a moving and 
electrically conducting liquid induces both electric and 
magnetic fields. A body force known as the Lorentz force 
is produced as a result of the interaction between the 
induced magnetic and electric fields. This force tends to 
oppose the movement of the liquid which leads to 
decrease the flow rate. Agrawal and Anwaruddin (1984) 
proposed a mathematical model for the effect of magnetic 
field on blood flow through an equally branched channel 
with flexible walls. They found that the magnetic field can 
be used as a blood pump in carrying out cardiac 
operations to cure some arterial diseases such as 
arteriosclerosis and arterial stenosis. Stud et al. (1977) 
examined the effect of a moving magnetic field on blood 
flow, and found that the application of a suitable magnetic 
field increases the blood flow rate.          

In current study, we investigate analytically and 
numerically the effect of magnetic field on velocity and 
temperature distributions in case of pulsatile flow across 
a cylindrical duct. The importance of this study could be 
so sensible in the knowledge of blood behavior when 
subjected to a magnetic field and therefore offering best 
platform to reduce some arterial diseases. Finite 
differences method with an implicit scheme is used in 
order to solve the dimensionless governing equations. 
Velocity and temperature profiles are presented for 
different Womersley and Hartmann numbers. 
 
 
MATHEMATICAL FORMULATIONS 
 
Physical problem 
 
The dynamic and thermal behaviors of a viscous and electrically 
conducting fluid flow between two cylindrical ducts, is presented in 
Figure 1. The fluid flow is subjected to a constant magnetic field 
and a pulsatile pressure gradient parallel to the axis. 
       

 

 

𝜕𝑃

𝜕𝑧
= −𝐴 𝑐𝑜𝑠(𝜔 𝑡) 

 
 
Initially, the internal duct is at a temperature of Tint=400 K, the 
external duct is supposed adiabatic and the fluid is at a temperature 
of 300 K and atmospheric pressure. 
 
 
Governing equations 
 
Simplifying assumptions 
 
1. The  fluid  is  incompressible,  viscous   and   electric   conductor, 
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2. The flow is laminar and axisymmetric, 
3. The energy losses due to viscosity are negligible, 
4. The magnetic field is constant and radial. 
 
Under the mentioned assumptions, the governing equations are: 
 
Continuity equation: 
 

                                                                                       (1) 

 
Momentum equation: 
 

                      (2) 

 
Energy equation: 
 

                                       (3) 

 
By introducing the following dimensionless variables:   
 

, , , , , 

, , ,  

 . 

 
The explicit form of the governing equations can be written as 
follows: 
 

                                                                     (4) 

 
 

 

 

           (5) 
 

                       
       (6) 

 

              (7) 

 
Initial conditions: 
 

t=0  

  

  

 
Boundary conditions: 
 
At the external duct:  
 

   

  

 
At the internal duct: 
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ANALYTICAL SOLUTION  

 
In order to solve the problem analytically, we assume that the flow 
is fully developed: 
 
The governing equations of the fluid flow become: 
 
Momentum equation: 
  

                          (8)     

 
Energy equation: 
 

                      (9) 

 
Due to the axis-symmetry of the problem, the study can be reduced 
to the annular space between the two ducts.  
The dimensionless equations (8) and (9) become: 
 

                          (10) 

 

                           (11) 

 
 
The pressure gradient can be written as: 
 

                                       (12) 

 
The velocity solution is sought in the form: 
 

                                               (13) 

 
By introducing this solution in equation (10), we obtain the following 
modified Bessel equation:  
 

                 (14)  

 
Where the solution is a combination of Bessel functions I0 and K0 of 
first and second kind respectively: 
 

 
 

Where:   

The constants C1 and C2 that are determined from the no slip 
boundary conditions: 
 

                                                                     (15)  

 

                                                                     (16) 

 
 
 
 
In order to ease the form of equations, we pose:  
 

 

 
Therefore: 
 

 (17)  

 
and 
 

                              (18) 

 
Thus, the evolution of the velocity profile can be written as follows:  
 

  

(19) 
                                                                           
In order to solve analytically the equation (11), we assume that the 
temperature solution profile can be written as: 
 

  (20) 

 

With:                                                  

Therefore, we obtain the following differential equation: 
 

                   (21) 

 
By using the following boundary conditions: 
 

                                                                        (22) 

 

                                                                         (23) 

 
The temperature solution profile can be written as: 
 

            (24) 
 

Where:   

 

   

  

  

  



 
 
 
 

 

 
 

Figure 1. Flow field geometry. 

 
 
 
NUMERICAL ANALYSIS   
 
The system of Equation (4) to (7) with the corresponding initial and 
boundary conditions is solved numerically by finite differences 
method using implicit scheme. The obtained solution at the fully 
developed regime will be compared to the analytical solution (19) 
for the axial velocity and (24) for the temperature. 

At each new time, the system of the algebraic equations resulting 
from the FDM discretization have tri-diagonal matrix form which is 
solved by TDMA Algorithm.    
Because the problem of this study is axisymmetric, the 
computational domain is reduced to the mesh grid domain 
illustrated in Figure 2a.   

In the vicinity of the ducts, the mesh is refined by replacing the 
mesh situated near the wall of the internal duct by sub decreasing 
mesh size following geometric sequences of G (Figure 2b). Where 
the sum of sub-mesh sizes is equal to the size of a mesh grid. 
Other meshes that are far from the ducts remain the same size. 

 
 

RESULTS AND DISCUSSION  
 
Figures 3 to 8 show the analytical and numerical 
solutions obtained for the velocity profiles for   

and Ha=0. 
It can be seen that there is a large similarity between 

the analytical and numerical results, which validate the 
numerical method used in this study. Some differences 
exist because the analytic solution takes into 
consideration one-directionality of the problem.  

In order to show the effect of magnetic field on the 
velocity profiles, the following results are shown in 
Figures 9 to 11 without magnetic field (Ha=0) for 

 and different Womersley (Re). 

However, the following results that are shown in 
Figures 12 to 14 illustrate the effect of magnetic field on 
the velocity profiles for a wide range of Hartmann 
numbers (Ha=1, 15, 30).  

This results show that the maximum of velocity in a 
pulsatile flow is situated near the walls of the ducts, which 
is called the annular effect, revealed by experimentally by 
Richardson and others and developed analytically by 
Atabek and Chang (1961). This annular effect increases 

by the increase of Womersley number Re. The Figure 
15 shows the influence of Womersley number on the 
situation of velocity maximums in the annular space 
between the two ducts. 
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In the other hand, it can be seen from Figures 12 to 14 
that the magnetic field acts as a retardant against the 
flow which leads to decrease the flow rate. Furthermore, 
the magnetic field leads to eliminate the annular effect 
which is considered as a characteristic of the pulsatile 
flow. 

The flow area also influences on the velocity profiles by 
eliminating the annular effect as it is shown in (Table 1) 
where the dimensionless radius of the internal duct varies 
from 0.3 to 0.8  

The results show that the decrease in the flow area 
from 0.7 to 0.5 leads to decrease gradually the annular 
effect. Nevertheless, the annular effect is almost absent 
when the flow area is in the vicinity of 0.4 to 0.2.    

Figure 16 illustrates the influence of flow area reduction 
on velocity profile and its impact on the annular effect. 
The reduction of flow area leads to increase the velocity 
as it is shown in Figure 16, where the velocity increases 

from about 0.4 to 1.2 for the same Re, t and Ha. 
However, it can be seen that the velocity maximums are 
in the vicinity of the ducts for the flow areas that vary from 
0.7 to 0.5 and the reduction in the flow area leads to 
reduce the annular effect until its disappearance for the 
flow areas that vary from 0.4 to 0.2 where the velocity 
maximum is situated in the middle of the annular space. 

Figures 17 and 18 shows a comparison between 
results of the vortex profiles obtained by the present 
study and those obtained by Majdalani (2008).  

It can be seen that the results of vortex profiles 
obtained by the present study resemble to the results 
obtained by Majdalani (2008). However, the existence of 
slight differences is due to the fact that Majdalani (2008) 
worked on a pulsatile flow in a rectangular duct.   

The Figure 19 shows the temperature profiles for a 

moderate flow regime (Re=10) and without the 
application of magnetic field (Ha=0). However, the Figure 
20 shows the temperature profiles for the same regime 
but in presence of magnetic field (Ha=15). 

At the light of the results presented in Figures 19 and 
20, it appears that the application of an external magnetic 
field has improved the heat transfer between the two 
ducts. In addition, the velocity can be controlled by 
managing the magnetic field which means that the heat 
transfer can be reduced or enhanced depending on the 
application required. 

 
 
Conclusion 

 
The effect of magnetic field on heat transfer has been 
studied analytically and numerically. An exact solution for 
velocity and temperature distribution across the annular 
space between two cylinders in case of a pulsatile flow is 
developed, which is precious for the knowledge of blood 
behavior when subjected to a magnetic field which will 
lead  to  further  improve  the  reduction  of  some  arterial
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                         a                                                        b 
 
 
Figure 2b. Scheme of the grid independency analysis. 

 

 

 
    

Figure 2. (a) Computational domain, (b) Scheme of the grid independency analysis. 
 
 
 

 

    

 

 

 

 

 

                                                                             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3. Analytical velocity profiles for Re=1. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4. Analytical velocity profiles for Re=10. 
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Figure 5. Analytical velocity profiles for Re=30. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6. Numerical velocity profiles for Re=1. 
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Figure 7. Numerical velocity profiles for Re=10. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 8. Numerical velocity profiles for Re=30. 
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Figure 9. Velocity profiles for Re=1, Ha=0. 

 
 
 

Figure.9: Velocity profiles for Re=1, Ha  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure.10: Velocity profiles for Re=10, Ha 
 

 

Figure 10. Velocity profiles for Re=10, Ha=0. 
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Figure 11. Velocity profiles for Re =30, Ha=0. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 12. Velocity profiles for Re=1, Ha=1. 
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Figure 13. Velocity profiles for Re=10, Ha=15. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 14. Velocity profiles for Re =30, Ha=30. 
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Figure 15. Position of velocity maximums for different Womersley numbers and Ha=0. 

 
 
 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

  
 

Figure 16. Influence of the flow area (from 0.3 to 0.8) on the velocity profiles for Re=20, t=30o, Ha=0. 
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Figure 17. Vortex profiles for Re=10 obtained by the present study. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

  
 

Figure 18. Vortex profiles for Re=10 obtained by Majdalani (2008). 
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Figure 19. Temperature profiles for Re =10 and Ha=0. 

 
 
 

 

 
 

Figure 20. Temperature profiles for Re=10 and Ha=15. 
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Table 1. Position of velocity maximums for Re =20, t=30o, Ha=0. 
 

Dimensionless radius Position of velocity maximum Percentage 

0.3 0.455 22.14 

0.4 0.551 25.17 

0.5 0.663 32.6 

0.6 0.791 47.75 

0.7 0.849 49.66 

0.8 0.900 50.00 

 
 
 
diseases. The developed analytical solutions for the 
velocity and temperature are shown graphically for a wide 
range of Womersley and Hartmann numbers. The results 
showed that the constant magnetic field imposed to the 
pulsatile flow leads to eliminate the annular effect, which 
is a characteristic of this type of flow. Furthermore, the 
results showed that the velocity could be controlled by 
the external magnetic field and also the temperature and 
so the heat transfer could be reduced or improved by 
mastering the intensity of the magnetic field.      
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In this paper, gravitational effects on propagation of surface waves in a homogeneous fibre-
reinforced anisotropic general viscoelastic media of higher order with voids is investigated. The 
general surface wave speed is derived to study the effects of gravity on surface waves. Particular cases 
for Stoneley and Rayleigh waves are discussed. The results obtained in this investigation are more 
general in the sense that some earlier published results are obtained from our result as special cases. 
In the absence of voids our results for viscoelastic of order zero are well agreement to fibre-reinforced 
materials. Also by neglecting the reinforced elastic parameters, the results reduce to well known 
isotropic medium. Numerical results for particular materials are given and illustrated graphically. The 
results indicate that the effect of the gravitational, voids and the reinforced elastic parameters on 
surface waves are very pronounced. 
 
Key words. Fibre-reinforced, viscoelastic, surface waves, gravity, anisotropic, voids.  

 
 
INTRODUCTION 
 
It is of great interest to study the propagation of surface 
waves in a homogeneous fibre-reinforced anisotropic 
general viscoelastic media of higher order with voids as it 
plays an importent role in material fracture and failure. 
Such problems have attracted much attention and have 
undergone a certain development (Bullen, 1965; Ewing 
and Jardetzky, 1957; Rayleigh, 1885; Stoneley, 1924). 

Surface waves have been well recognized in the study of 
earthquake, seismology, geophysics and geodynamics. 
These waves usually have greater amplitudes as 
compared with body waves and travel more slowly than 
body waves. There are many types of surface waves but 
we only discussed Stoneley and Rayleigh waves. In 
earthquake the movement is due to the surface waves.
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These are also used for detecting cracks and other 
defects in materials. Lord Rayleigh (1885) was the first to 
observe such kind of waves in 1885. That is why we 
called it Rayleigh waves. Sengupta and Nath (2001) 
investigated surface waves in fibre-reinforced anisotropic 
elastic media but their decomposition of displacement 
vector was not correct due to which some errors are 
found in their investigations (Sarvajit, 2002). 

The idea of continuous self-reinforcement at every 
point of an elastic solid was introduced by Belfield et al. 
(1983). The superiority of fibre-reinforced composite 
materials over other structural materials attracted many 
authors to study different type of problems in this field. 
Fibre-reinforced composite structures are used due to 
their low weight and high strength. Two important 
components namely concrete and steel of a reinforced 
medium are bound together as a single unit so that there 
can be no relative displacement between them, that is, 
they act together as a single anisotropic unit. The artificial 
structures on the surface of the earth are excited during 
an earthquake, which give rise to violent vibrations in 
some cases. Engineers and architects are in search of 
such reinforced elastic materials for the structures that 
resist the oscillatory vibration. The propagation of waves 
depends upon the ground vibration and the physical 
properties of the structure material. Surface wave 
propagation in fiber reinforced media was discussed by 
various authors. 

In classical theory of elasticity, the voids is an important 
generalization. Nunziato and Cowin (1979) and Cowin 
and Nunziato (1983) discussed the theory in elastic 
media with voids. Puri and Cowin (1985) studied the 
effects of voids on plane waves in linear elastic media 
and it is evident that pure shear waves remain unaffected 
by the presence of pores. Theory of thermoelastic 
material with voids is investigated by Lesan (1986). Good 
amount of literature on surface wave propagation in a 
generalized thermoelastic material with voids, is available 
in Singh and Pal (2011) and references therein. 
Chandrasekharaiah (1987a, b) discussed the effects of 
voids on propagation of plane and surface waves. Abo-
Dahab (2010) investigated the propagation of P waves 
from stress-free surface elastic half-space with voids. 

The effect of gravity on wave propagation in an elastic 
solid medium was first considered by Bromwich (1898). 
Later on gravity effects on wave propagation were 
discussed by various authors (Abd-Alla et al., 2013; Abd-
Alla and Ahmed, 2003; De and Sengupta, 1974; 
Sengupta and Acharya, 1979) 

Surface waves in fiber-reinforced,general viscoelastic 
media of higher order under gravity is discussed by kakar 
et. al. (2013) whereas Pal and Sengupta (1987) studied 
the gravitational effects in viscoelastic media. Ren et al. 
(2012) investigated the coupling effects of void shape 
and void size on the growth of an elliptic void in a fiber-
reinforced hyper-elastic thin plate. Vishwakarma et al. 
(2013) discussed the  influence of rigid  boundary  on  the  
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love wave propagation in elastic layer with void pores. 
Tvergaard (2011) studied the elastic–plastic void 
expansion in near-self-similar shapes. Fonseca et al. 
(2011) expressed the material voids in elastic solids with 
anisotropic surface energies. The extensive literature on 
the topic is now available and we can only mention a few 
recent interesting investigations in Abo-Dahab and Abd-
Alla (2014), Abd-Alla et al. (2011), Abd-Alla and Ahmed 
(2003), Abd-Alla (1999), Abd-Alla and Ahmed (1999), 
Abd-Alla et al. (2004), Elnaggar and Abd-Alla (1989), 
Abd-Alla and Ahmed (1996) Abd-Alla et al. (2012) and 
Abd-Alla et al. (2013). Aim of this paper is to investigate 
the gravitational effects on propagation of surface waves 
in fibre-reinforced viscoelastic anisotropic media of higher 
order with voids. The general surface wave speed is 
derived to study the effect of gravity and voids on surface 
waves. Particular cases for Stonely and Rayleigh waves 
are discussed. The results obtained in this investigation 
are more general in the sense that some earlier 
published results are obtained from our result as special 
cases. Numerical results are given and illustrated 
graphically. 
 
 
FORMULATION  OF THE PROBLEM 
     
The constitutive relation of an anisotropic and elastic 
solid is expressed by the generalized Hooke’s law, which 
can be written as: 
 

ij = Cijkl  kl i, j, k, l =1, 2, 3. 
 

where,
 

ij  are the Cartesian components of the stress 

and ijε  is the strain tensor which is related with the 

displacement vector, ui ; ijklC  are the components of a 

fourth-order tensor called the elasticities of the medium. 
The Einstein convention for repeated indices is used.  
In the absence of body forces, the field equations in the 
presence of voids may be taken as follows: 
 

,ij j iu  ,               (1) 

 

0,ii i ,iu        
            (2) 

 

 ijkl klij ijC  
            

(3) 
 

In these equations,  is the so-called volume fraction 

field. 0, , ,     and  are new material constants 

characterizing the presence of voids.   
is the mass 

density. Comma followed by index shows partial 
derivative   with   respect   to   coordinate.   The   Einstein  

http://www.sciencedirect.com/science/article/pii/S0894916612600287
http://www.sciencedirect.com/science/article/pii/S0894916612600287
http://www.sciencedirect.com/science/article/pii/S0894916612600287
http://www.sciencedirect.com/science/article/pii/S0927025611003077
http://www.sciencedirect.com/science/article/pii/S0927025611003077
http://www.sciencedirect.com/science/article/pii/S0021782411000882
http://www.sciencedirect.com/science/article/pii/S0021782411000882
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convention for repeated indices is used. Thus Above 
equation under gravity force G becomes: 
 

, ,iijkl k jl i iGu uC                            (4) 

 
Medium is consisting of two homogeneous anisotropic 
fibre-reinforced semi-infinite elastic solid media M1 and 
M2 with different elastic and reinforcement parameters. 
The two media are perfectly welded in contact at a plane 
interface. Let us take orthogonal Cartesian 

axes 1 2 3Ox x x with the origin at O . 2Ox is pointing vertically 

 
 
 
 
upwards into the medium, M1 (

2x > 0). Each of the media 

M1 (
2x > 0) and M2 (

2x < 0) separated at 
2x = 0.  

It is assumed that the waves travel in the positive 
direction of the x1-axis and at any instant, all particles 
have equal displacements in any direction parallel to Ox3. 
In view of those assumptions, the propagation of waves 
will be independent of x3. Therefore all derivatives with 
respect to x3 will be zero.  

The general equation for a fibre-reinforced linearly 
elastic anisotropic media with respect to a direction  

1 2 3( , , )a a a a is as follows (Sengupta and Nath, 2001): 

 

)2 ( 2( )( ) ( ),
T L Tkl kk ij ij k m km ij kk i jijkl i k kj j k ki k m km i jD D D a a a a D D a a a a D a aC a a                      

 

Strain tensor is 1
, ,2

( )ij i j j iu u   and  D ,
T

D 
are 

elastic parameters. ,D D
and (D )

L T

D    are 

reinforced anisotropic viscoelastic parameters of higher 
order, s , defined as: 

 
k k

k kD D
t t

  
    

    
    

 

L k

k k

k LD D
t t

  
    

    
    

 

T k

k k

k TD D
t t

  
    

    
    

 

0,1,2... .k s
 

 
An Einstein summation convention for repeated indices 
over “k” is used and comma followed by an index denotes 
the derivative with respect to coordinate. 

iu are the displacement vectors components. By 

choosing the fibre direction as  (1,0,0)a  , the 

components of stress becomes as follows: 
 

11 11 22 33

22 11 22 33

33 11 22 33
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12 12

23 23

(D 2 4 2 ) (D ) (D ) ,

(D ) (D 2 ) ,
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2 ,

2 ,

2 .

L T

T
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L

L

T

D D D D D D

D D D

D D D

D

D

D

        

    

    












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 

 

 

         

     

     







 

 

By choosing the fibre direction as  (1,0,0)a  ; also by 

taking all derivatives w.r.t. 3x zero. The Equation (4) of 

motion takes the following form: 

 

1,11 2,21 1,22 3,

1 ,

1

1

(D 2 4 2 ) (D )
LL T L

D D D D u D D u D u gu

u

         

 

         


                              (5a) 

 

1,12

,

2,11 2,22 3,2

2 2

(D ) ( 2 )
k L L k T

D D u D u D D u gu

u

      

 

      


             (5b) 

 

T3,11 3,22 1,1 2,2 3D D ( ) ,
L
u u g u u u                (5c) 

 
From Equation (2), we have: 
 

   11 22 0 11 2 2, , , ,u u                          (5d) 

 

Similarly, we can get similar relations in 2M with 

, , , , vc    ,D ,D  ,
L

D
T

D and D are replaced 

by , , , , vc        ,DD   ,
L

D
T

D and D  ,
 that is, 

all the parameters in medium M1 are denoted by super 
script “dash”. 

Equations (5) in simplified form can be written as: 
 

3 1,11 2 2,21 1 1,22 3,1 1 1,h u h u hu gu u      
        (6a) 

 

4 2,22 2 1,12 1 2,11 3,2 2 2,h u h u hu gu u      
         (6b) 



 

 

 

 

1 3,11 5 3,22 1,1 2,2 3( )    hu h u g u u u

                      (6c) 
 

   11 22 0 11 2 2, , , ,u u            
 
,         (6d) 

 
where 
  

1 2 3, D , D 2 4 2
L L L T

h D h D D h D D D D                , 

1 2 3, D , D 2 4 2
L L L T

h D h D D h D D D D                
1 2 3, D , D 2 4 2

L L L T

h D h D D h D D D D                

4 2
k T

h D D   and 
5 T

h D
 

 
 

SOLUTION OF THE PROBLEM 
 

To solve the coupled thermoelastic equations, we make 
the assumptions: 
                

 

 

1 2 3 1 2 2 2 3 2 1

2 1

ˆ ˆ ˆ, , ( ), ( )

ˆ   

, ( ) ( )

) ( )(  

exu u u u x u p

ex

x u x i x ct

x i x tp c



 






   (7)     

 
Thus coupled equations (6a, b and c)) becomes: 
 

2 2 2 2

1 3 1 2 2 3
ˆˆ ˆ ˆ( ) 0D c u i Du i gu i          

      
2 2 2 2

5 1 3 1 2
ˆ ˆ ˆ( ) ( ) 0       D c u g i u Du

 
and 

    2 2 2 2
0 1 2 0ˆ ˆ ˆD i c c i u Du               

 
 

where
 

1 2

3

4 5

( ) , ( )( ) ,

( 2 4 2 )( ) ,

( 2 )( ) , ( ) .

k k

Lk k k Lk

k

k k Lk Tk k

k k

k Tk Tk

i c i c

i c

i c i c
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Above set of equation can be written as 
 

 

2

1 1 1 2 2 3

2

4 2 2 2 1 3
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 

  

    


     


    

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From above set of equations, for non-trival solution, we 
have: 
 

2

1 1 2

2

2 4 2

1 22

5 2

2

3
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( ) ˆˆ ˆ( , , ) 0
( ) 0

0 ( )

D A i D i g i
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i g gD D A

i D D A
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 This implies 

 

8 6 4 2

1 2
ˆˆ ˆ( )( , , ) 0D ED FD GD H u u     

 
where 
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1
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 2 2 2

4 1 1 2 4 3 2( )A A A A      
 

  2 2 2 2
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 2 2

1 2 3 2C A A A A  
 

2Let D m
 

Auxiliary equation becomes: 
 

4 3 2 0m Em Fm Gm H    
                      (9)  

 
E,F,G and H must be positive for real positive roots (m). 
In the absence of gravity the above equation is cubic and 
if  there are no voids then the above equation is quadratic 
in m and it is easy to solve.

  

Let mi  (i=1,2,3,4)  be four positive real roots, then 
solution by normal mode method has the following form: 
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2

4
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1
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n

m xnM e



                                  (10d) 

 

where nM , 1nM , 2nM and 3nM   are some parameters. 

By using Equations (10a to d) into Equations (8), we get 
the following relations: 
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Hence we obtain the expressions of the displacement 
components, volume fraction field and stresses as follows  
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Also it is found that 
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Similar expressions can be obtained for second mediun 
and present them with super script dashes as follows: 
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Also it is found that: 
 

   2

4

12 1 1 1

1

( ) ,n n n

n

m xnm i H M exe i x ctp  



         

   2

4

22 2 1 4 1 3 1

1

( ) ( ) ,–n n n n

n

m xni m H H M e i xe p ctx  



          

 

   2

4

23 5 2 1

1

( ) .n n n

n

m xnm H M expe i x ct 



       

 
In order to determine the secular equations, we have the 
following boundary conditions. 
 
 
BOUNDARY CONDITIONS 
 
1. The displacement components and volume fraction 
field between the mediums are continuous, that is, 

1 1,u u 2 2u u ,  3 3u u  and    on  2 0x  , for 

all 1x and t. 

2. Stress continuity exists, i.e. 12 12   , 22 22   , 

23 23    on 2 0x  , for all 1x and t. 

3. It is assumed that the following relation hold: 
 

1 2

2 1

2 2

, on theplane 0 , ,

mediumM medium M

h h x x and t
x x

 
 

    
       

    

 

 
where h is a constant. 
Boundary conditions implies the following equations: 
 

1 2 3 4 1 2 3 4

11 1 12 2 13 3 14 4 11 1 12 2 13 3 14 4

21 1 22 2 23 3 24 4 21 1 22 2 23 3 24 4

31 1 32 2 33 3 34 4 31 1 32 2 33 3 34 4
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             
                 (13a)

 

 



 
 
 
 

   

 

 

     

4 4

1 1 1 1

1 1

4

2 1 4 1 2

1

4

2 1 4 1 2

1

4 4

5 2 5 2

1 1

4 4

3 3

1 1

,

( )

( ) ,

(

–

) ( )

–

n n n n n n

n n

n n n n

n

n n n n

n

k

n n n n n n

n n

n n n n n n

n n

m i H M m i H M

i m H H M

i m H H M

i c m H M m H M

h m H M h m H M



 









 





 

 


        




   



        



       


    






 





 

 


(13b)

 

Khan et al.           609 
 
 
 

Elimination of constants , ( 1,2,3,4) n nM and M n   

from above set of relation, gives the following secular 
equation for surface wave in a fibre reinforced 
viscoelastic material of higher order s under gravity with 
voids. 
 
det( ) 0; 1,2,3,4,5,6,7,8.pqa p q  

       (14) 
 
where
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PARTICULAR CASES 
 
Stoneley waves 
 
Equation (14) is the secular equation for Stonely waves in  

a fibre reinforced viscoelastic media of higher order. For k 
= 0, results are similar to Abd-Alla (2003). If rotational, 
voids and fiber-reinforced parameters are ignored, then 
for k = 0, the results are same as Stoneley (1924). 
 
 
Rayleigh waves 

 
Rayleigh wave is a special case of the above general 
surface wave. In this case we consider a model where 

the medium, 1M is replaced by vacuum. Since the 

boundary, 2 0x   is adjacent to vacuum. It is free from 

surface traction. So the stress boundary condition in this 
case may be expressed as: 

 

12 0   ,  22 0  on  2 0x  , for all 1x and t. 

2 1

2

0, on theplane 0 , ,h x x and t
x





   


 

 
It is assumed that gravitational field produces a 
hydrostatic initial stress. It produced by a slow process of 
creep where the shearing stresses tend to small or 
vanish after a long period of time. Equilibroim conditions 
of initial stress are: 

 

11 11

1 2

0, 0g
x x

 


 
  

 
 

 
Thus above set of equations reduces to: 
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Eliminating the constants 1,M 2 ,M 3M
 
and 4M we get 

the wave velocity equation for Rayleigh waves in the 
fibre-reinforced viscoelastic media of order s under the 
influence of gravity as follows: 
 

det( ) 0; 1,2,3,4.lmb l m  
                     (15) 
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Equation (15) is the secular equation for Rayleigh wave 
for the medium M1. For k = 0 and by ignoring the voids 
and gravitational effects our results are same as that of 
Sengupta and Nath (2001). If one ignores the fibre-
reinforced parameters also then results are same as 
Rayleigh (1885).  

 
 
NUMERICAL SIMULATION AND DISCUSSION 
 
The following values of elastic constants  are  considered  

 
 
 
 

Chattopadhyay et al. (1987) for mediums M and 
1M  

respectively. 
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The numerical technique outlined above was used to 
obtain secular equation, surface waves velocity and 
attenuation coefficients under the effects of rotation in 
two models with voids. 

For the sake of brevity some computational results are 
being presented here. The variations are shown in 
Figures 1 and 2, respectively. 

Figure 1a to i show the variation of  the magnitude of 

the frequency equation  , Stoneley wave velocity 

)Re( and attenuation coefficient )Im(  with 

respect to the frequency   for different values of  order 

,k  gravity field g  and phase velocity c . The magnitude 

of the frequency equation increases with increasing of 
frequency, while it decreases with increasing of order and 
gravity field and when effect of phase velocity it increases 
with increasing of phase velocity, as well, Stoneley wave 
velocity decreases with increasing of frequency, while it 
increases with increasing of order and gravity field and 
when effect of phase velocity, it decreases with 
increasing of phase velocity and  the attenuation 
coefficient increases with increasing of frequency, except  
when effect of phase velocity it decreases with increasing 
of frequency, while it increases with increasing of order , 
as well it decreases with increasing of gravity field and 
phase velocity.  

Figures 2a to i show the variation of  the magnitude of 

the frequency equation  , Stoneley wave velocity 

)Re( and attenuation coefficient )Im(  with 

respect to the frequency   for different values of  order 

,k  gravity field g  and phase velocity c . The magnitude 

of the frequency equation increases with increasing of 
frequency, while it decreases with increasing of order and 
gravity field and when effect of phase velocity it increases 
with increasing of phase velocity, as well, Stoneley wave 
velocity decreases with increasing of frequency, while it 
increases with increasing of order and gravity field and 
when effect of phase velocity, it decreases with 
increasing of phase velocity and  the attenuation 
coefficient increases with increasing of frequency and 
when effect of phase velocity it increases and decreases 
gradually with increasing of frequency, while it decreases 
with increasing of phase velocity.  

Finally, one can see that there  is  a  similarity  between
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Figure 1. Variation of  , velocity ( Re( ) ) and attenuation coefficient ( Im( ) ) for Stoneley waves with respect to   with 

variation of ,k g  and c. 
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Figure 2. Variation of  , velocity ( Re( ) ) and attenuation coefficient ( Im( ) ) for Rayleigh waves with respect to   

with variation of ,k g  and c. 

 
 
 
the graphs of two waves types (that is, Stoneley and 
Rayleigh) in the behavior but there are differences 
between the values and part of their behavior. 

CONCLUSION 
 
Due to the complicated nature of the governing equations  



 
 
 
 
of the fibre-reinforced anisotropic general viscoelastic 
media of higher order with voids, the work done in this 
field is unfortunately limited in number. The method used 
in this study provides a quite successful in dealing with 
such problems. This method gives exact solutions in the 
fibre-reinforced anisotropic elastic media without any 
assumed restrictions on the actual physical quantities 
that appear in the governing equations of the problem 
considered. Important phenomena are observed in all 
these computations:                                                                                                                                                              
 
1. It was found that the solutions obtained in the context 
of the fibre-reinforced anisotropic general viscoelastic 
media of higher integer and fractional order with voids, 
however, exhibit the behavior of speeds of wave 
propagation. 
2. By comparing Figures 1 and 2, it is found that the wave 
velocity has the same behavior in both media. But with 
the passage of gravity field, numerical values of wave 
velocity in the viscoelastic media are large in comparison 
due to the viscoelastic fiber-reinforced. 
3. Special cases are considered as Stoneley and 
Rayleigh waves only. 
4. The results presented in this paper should prove useful 
for researchers in material science, designers of new 
materials. 
5. Study of the phenomenon of rgravity field is also used 
to improve the conditions of oil extractions. Finally, if the 
rotation is neglected, the relevant results obtained are 
deduced to the results obtained by Sengupta and Nath 
(2001). 
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